Since it relies on volatile memory chips for storage, the i-RAM will lose data if the power is cut. Fortunately, the card can draw enough juice from a motherboard's PCI slot to keep its four DIMM slots powered, even when the system is turned off. The system does have to be plugged in and its power supply turned on, though. To allow users to unplug their systems for periods of time and to protect against data loss due to a power failure, Gigabyte also equips the i-RAM with a rechargeable lithium ion battery that packs 1600 milliamp-hours of power. The battery charges while the system is plugged in, and according to Gigabyte, it can keep four 1GB DIMMs powered for more than ten hours. Battery life will vary depending on the i-RAM's memory module configuration, though. It's probably a good thing to back up anything you actually store on the drive, just in case. To be honest, we didn't actually expect Gigabyte to turn the i-RAM into an actual end-user product, much less make it available in North America. But they have, and at $150 online, the i-RAM is actually pretty affordable, all things considered. With the price of 1GB DDR modules is hovering around $80, it's possible to build a 4GB i-RAM drive for under $500. That's a horrific cost per gigabyte for a hard drive or RAID array, but it's pretty good for a solid-state storage device with this kind of performance. Of course, the i-RAM isn't without limitations. Performance is undoubtedly constrained by the 150MB/s Serial ATA interface, and I shudder to think how much faster the i-RAM could be if it supported 300MB/s transfer rates. Size is an issue, as well. With only four DIMM slots and no support for 2GB modules, the i-RAM hits a capacity ceiling at 4GB. That might be enough storage for certain applications, but it leaves us wanting more. We'd gladly accept a double-wide design if it allowed for a greater number of DIMM slots and a larger overall capacity. As it stands, you'll have to rig up multiple i-RAM drives in RAID to breach the 4GB barrier.